• 深高金
  • 数经院
  • 捐赠
搜索
返回主站
English
  • 学院概况
    • 概览
      • 一个品牌,两个校园
      • 学院教学目标与评级
      • 学院手册
      • 学院视频
    • 院长致辞
    • 深圳高等金融研究院
  • 专业设置
    • 概览
    • 本科生
      • 大数据管理与应用
      • 经济学
      • 会计学
      • 金融学
      • 国际商务
      • 金融工程(与理工学院及数据科学学院联合创办)
      • 市场营销
      • 2+2 双主修
    • 授课型研究生
      • 全日制项目
        • 金融学理学
        • 经济学理学
        • 会计理学
        • 数据科学理学
        • 市场学理学
        • 信息管理与商业分析理学
      • 兼读制项目
        • 供应链与物流管理高级管理人员理学
        • 金融学理学
        • 管理学理学(MBM)
        • 金融EMBA
    • 研究型研究生
      • 经管学院哲学博士项目
  • 教师与研究
    • 概览
    • 学院师资
    • 研究
      • 研究成果
      • 研究中心
      • 金融交易实验室
      • 学术讲座
    • 研究人员
      • 博士后
      • 博士研究生
    • 教师招聘
  • 经管学子
    • 概览
    • 学术咨询
    • 学生风采
  • 环球视野
    • 概览
    • 新闻公告
    • 环球合作专业
      • 环球供应链与物流管理专业
      • 交换生活
    • 本硕联合培养项目
    • 海外游学项目
      • 交换
      • 访学
      • 暑课
    • 了解更多
  • 职业发展中心
  • 校友事务
  • 学院概况
    • 概览
      • 一个品牌,两个校园
      • 学院教学目标与评级
      • 学院手册
      • 学院视频
    • 院长致辞
    • 深圳高等金融研究院
  • 专业设置
    • 概览
    • 本科生
      • 大数据管理与应用
      • 经济学
      • 会计学
      • 金融学
      • 国际商务
      • 金融工程(与理工学院及数据科学学院联合创办)
      • 市场营销
      • 2+2 双主修
    • 授课型研究生
      • 全日制项目
        • 金融学理学
        • 经济学理学
        • 会计理学
        • 数据科学理学
        • 市场学理学
        • 信息管理与商业分析理学
      • 兼读制项目
        • 供应链与物流管理高级管理人员理学
        • 金融学理学
        • 管理学理学(MBM)
        • 金融EMBA
    • 研究型研究生
      • 经管学院哲学博士项目
  • 教师与研究
    • 概览
    • 学院师资
    • 研究
      • 研究成果
      • 研究中心
      • 金融交易实验室
      • 学术讲座
    • 研究人员
      • 博士后
      • 博士研究生
    • 教师招聘
  • 经管学子
    • 概览
    • 学术咨询
    • 学生风采
  • 环球视野
    • 概览
    • 新闻公告
    • 环球合作专业
      • 环球供应链与物流管理专业
      • 交换生活
    • 本硕联合培养项目
    • 海外游学项目
      • 交换
      • 访学
      • 暑课
    • 了解更多
  • 职业发展中心
  • 校友事务
  • 深高金
  • 数经院
  • 捐赠
返回主站
English

面包屑

  • 首页
  • 学术讲座
  • 运营管理
  • 人工智能范式影响下的运筹学和决策支持的演变

人工智能范式影响下的运筹学和决策支持的演变

2024-08-02 运营管理

Topic:

The evolution of Operational Research and Decision Support under the influence of the Artificial Intelligence paradigm

Time&Date: 

10:30 AM - 12:00 PM,2024/08/02 (Friday)

Venue

Room 619, Teaching A Building

Speaker:

Prof. Roman Słowiński (Poznań University of Technology)

Abstract:

The old challenge of Operational Research was how to make better decisions based on optimization techniques. In recent years, the abundance of data about human choices changed the paradigm of Operational Research from ‘optimization’ to ‘analytics’. Furthermore, operational research users bacame increasingly aware that realistic decision support requires considering multiple conflicting criteria. ‘Optimum’ has thus been replaced by ‘best compromise’ determined by preferences of Decision Makers (DMs). For the development of personalized computing, the concept of preference has also become relevant for Machine Learning and Artificial Intelligence able to analyze vast amounts of user data to make predictions and recommendations. Preferences provide a means for specifying desires in a declarative and intelligible way, a key element for the effective representation of knowledge and reasoning respecting the value systems of DMs. 

We present a constructive preference learning methodology, called robust ordinal regression (ROR), for multiple criteria decision aiding. This methodology links Operational Research with Artificial intelligence, and as such, it confirms the current trend in mutual relations between these disciplines. 

In order to provide a ‘best compromise’ solution to a multiple criteria decision problem (ordinal classification, or ranking, or choice – with multiobjective optimization being a particular case), decision aiding methods require some preference information exhibiting a value system of a single or multiple DMs. In ROR, the preference information has the form of decision examples. They may either be provided by the DM on a set of real or hypothetical alternatives, or may come from observation of DM’s past decisions. This information is used to build a preference model, which is then applied on a non-dominated set of alternatives to arrive at a recommendation presented to the DM(s). In practical decision aiding, the process composed of preference elicitation, preference modeling, and DM’s analysis of a recommendation, loops until the DM (or a group of DMs) accepts the recommendation or decides to change the problem setting. Such an interactive process is called constructive preference learning. We describe this process for three types of preference models: (i) utility functions, (ii) outranking relations, and (iii) sets of monotonic decision rules. The case of a hierarchical structure of the set of criteria will be discussed, and the transparency and explainability features required from preference learning will be discussed on the example of interactive multiobjective optimization.

Biography:

Roman Słowiński is a Professor and Founding Chair of the Laboratory of Intelligent Decision Support Systems at Poznań University of Technology, and a Professor in the Systems Research Institute of the Polish Academy of Sciences. As a full member of the Polish Academy of Sciences he has been its Vice-President in 2019-2022. In his research, he combines Operational Research and Artificial Intelligence for Decision Aiding. Recipient of the EURO Gold Medal from the European Association of Operational Research Societies and Officer of the Academic Palms of France. Awarded the title Doctor Honoris Causa by six universities worldwide. Laureate of the 2005 Prize of the Foundation for Polish Science, and the Humboldt Research Award 2023 (Germany). He is also a member of Academia Europaea and Fellow of IEEE, INFORMS, IFIP, IFORS, AAIA, IRSS, IAITQM, and AIIA. Since 1999, he is coordinating editor-in-chief of the European Journal of Operational Research (Elsevier). 

Google Scholar: https://scholar.google.com/citations?hl=en&user=yCX-JrQAAAAJ 
Personal www site: https://fcds.cs.put.poznan.pl/IDSS/rslowinski/cv_en.htm  

关注我们
发现我们
  • 校园地图 联系方式 工作机会
探索更多
  • 图书馆 科研处 学术交流处 招生办 学生事务处
传媒聚焦
  • 学院新闻 媒体关系
版权所有 © 香港中文大学(深圳)经管学院